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LEITER TO THE EDITOR 

Ferromagnetic ground states for the Hubhard model on 
line graphs 

A Mielke 
lnstitutde Physique Thiarique, Ecole Polytechnique F&d.dCraie de Lausanne, PH B-Ecublenr, 
CH-I015 Lausanne, Switzerland 

Received 19 November 1990 

Abstract. We discus some of the properties of the Hubbard model on a line graph with 
n vertices. I t  is shown that the model has ferromagnetic ground states if the interaction i s  
repulsive ( U > O )  and if the number of electrons N satisfies Z n 3  N a M. M is a natural 
number that depends on the line graph. For example, the KagomC lattice is a line graph, 
it has M = 5 n / 3 - I .  

The question which are the conditions for a system of itinerant electrons to have a 
ferromagnetic ground state, has long been discussed and a final answer is not within 
view. The Hubbard model [ l ]  is a simple model t o  discuss such a question. It describes 
itinerant electrons on a lattice or more generally on a graph with an onside interaction. 
The Hamiltonian has the form 

f i = - z  U XY mr y c  + V I r i  X t  n I-. ( i )  

Let G = (V, E)  be a finite connected graph without loops (i.e. without an edge that 
connects a single vertex with itself). G may have multiple edges, Vis the set of vertices 
and E is the set of edges of G. x, y in (1) are elements of V, a, is equal to the number 
of edges connecting x and y and in the case of a simple graph, axy is thus 0 or 1. (axy) 

electrons with spin U on the vertex x and n,= c:,c,,, n, = n.y++nx_. They obey the 
usual anticommutation relations for fermions. U is a positive real number, it describes 
the magnitude of the on-side repulsion of the electrons on the vertices. 

In the following N is the number of electrons and one has Ns21VI where [VI 
denotes the number of elements of V. The Hamiltonian conserves the number of 

operators 

X,."." I 

is the a4jaieiiij. iiia:iix of c. i:,, (ixc) are the cieatioii (aiiiiihi:atioii) opeiatois i-oi 

e!ec!:ons wish spin + (-), which we dene!.. by .v+ (IC). !! CO"U!CS wit!! the 3piE  

s+=c c:+c,- s-=x c:_c,+ S' = +( N+ - N-).  (2) 
x 

These operators generate a global SU(2) symmetry. We may choose the eigenstates of 
H to be also eigenstates of 

(3) sf= (s')*+ f(s+s- + S-s+). 

This operator has the eigenvalues S(S+ 1) and we call S the spin of the eigenstate. 
There are only some special cases in which the existence of a ferromagnetic ground 

state of the Hubbard model is known. In the case of a hard-core repulsion between 

O j O j - M i O j y j i O i O O i j t O j S O j . j 0  @ i99i iGP Publishing itd i i 3  



L74 Letter to the Editor 

the electrons (i.e. U = m) and if the dynamically allowed permutations are all even, 
there is one among the ground states that has a maximal spin S =  N j 2  (saturated 
ferromagnetism) [2]. There are two cases where this theorem may be applied. The first 
is the one-dimensional case with an even number of electrons [3]. In this case there 
are many other ground states and one may show that up to exponentially small 
corrections the system behaves as an ideal paramagnet [4]. If the graph on the other 
hand obeys a certain connectivity condition [SI (which is not satisfied for example in 
the one-dimensional case) and if the number of electrons is N = I VI - 1, the ferromag- 
netic ground state is unique up to the degeneracy due to the global SU(2) invariance 
of H. This is the theorem of Nagaoka [6,7]. But this case is somewhat particular since 
it has been shown by Siito [8] that such a system behaves in the thermodynamic limit 
and for any temperature T>O as an ideal paramagnet. 

A unique ground state (again up to the degeneracy due to the global SU(2) 
invariance) with a macroscopic but not saturated value for the spin is obtained if the 
graph G is bipartite and N = I VI. A graph G is called bipartite if it has two disjoint 
vertex classes V, and V, such that each vertex is either in V, or in V, and each edge 
joins a vertex of V, to a vertex of V,. Lieb [9] has shown that in this case the ground 
state has a spin S = 41 1 V,J - 1 V,l 1. It is clear that S may be macroscopic. 

We will discuss the Hamiltonian (1) on graphs which belong to a certain class, 
namely on line graphs. The line graph L ( G )  = (V,, E L )  of a graph G (  V, E)  is construc- 
ted as follows. Its vertex set is the edge set of G, V, = E. Two vertices of V, are 
connected by as many edges as the corresponding edges in G have vertices in common. 
Some of the spectral properties of simple line graphs may be found in [lo] and most 
of them are valid for general line graphs without loops as well. The adjacency matrix 
AL of the line graph L ( G )  is easily constructed if one knows the incidence matrix 
B(G)  = (bxe)xEv,eeE of G. b,, is equal to 1 if the vertex x is incident to the edge e and 
zero otherwise. Then one has 

B(G)'B(G)  =2IIEl+A, (4) 

where E' is the transpose of B and I.  denotes the n-dimensional unit matrix. Since 
B'B is a positive-semidefinite matrix it follows from (4) that each eigenvalue a of the 
adjacency matrix A, obeys a 3 -2. Furthermore, if -2 is an eigenvalue of A,, then 
its eigenspace is the kernel of E (  G) and its multiplicity m(-2) 3 IEl- I VI. In particular, 
the following proposition holds. 

Proposition 

eigenvalue of AL. 

is m(-2)  = \ E /  - 1  VI + 1. 

is an eigenvalue of A, and its multiplicity is m ( - 2 )  = IEl- I VI. 

( a )  If G is a tree or a graph with only one cycle that is odd, then -2 is not an 

(b)  If G is bipartite but not a tree, then -2 is an eigenvalue of A, and its multiplicity 

( c )  If G is not bipartite and not a graph with only one cycle that is odd, then -2 

proof 
( a )  The edges and vertices of a tree T may always be ordered in such a way that 

the incidence matrix takes the form 
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where b is a row with entries 0 or 1 and E' is a IEl x IEJ matrix whose entries are 1 
in the diagonal, 0 in the upper triangle and 0 or 1 in the lower triangle. E' is thus 
non-singular. Therefore the rank of B as well as the rank of B'B is IEl. B'B is 
non-singular and from (4) it follows that -2 is not an eigenvalue of AL. 

On the other hand, let G be a tree with a n  additional edge such that G contains 
one cycle of length I where I is odd. Then as above we may order the edges and vertices 
of G in such a way that its incidence matrix B takes the form 

where E, is the incidence matrix of a cycle of length I, 0 is a ( 1  VI - I )  x I matrix whose 
entries are all equal to zero, E" is a ( 1  VI - I )  x (I VI - I )  matrix whose entries are 1 in 
the diagonal, 0 in the upper triangle and 0 or 1 in the lower triangle and X is a 

follows that B is non-singular and therefore B'B is non-singular. So -2 is not an 
eigenvalue of A,. 

( b )  Let V,  and V, be the two vertex classes of the bipartite graph G. Each edge 
may be oriented from V, to V,. Let S=diag(s,) be the diagonal matrix with entries 
s, in the diagonal where s, = 1 if x E V ,  and s, = -1  if x E V,.  The matrix D = SE is 

kernel is called the circuit space of G (see e.g. [IO]). The kemel of B is thus the circuit 
space with respect to this orientation and its dimension is IEI-IVI+l. From (4) it 
follows that it is also the eigenspace of the eigenvalue -2 of AL. 

( c )  Let G' be a simple subgraph of G which is constructed from a spanning tree 
of G with an  additional edge such that G' contains one cycle of length I where I is 
odd. I n  the proof of ( a )  it was shown that the incidence matrix E' of G' is non-singular. 
Therefore the incidence matrix B( G )  contains a 1 VI x I VI matrix that is non-singular. 
The rank of B and of B'B is thus I VI and the eigenspace of the eigenvalue -2 of A, 
has the dimension IEI-IVI. The eigenspace itself may be constructed as in ( b ) .  Let 
c, = ( e l ,  e2,  . . . , e.) be an even cycle. Then we may associate a vector u(c , )  =X(-)'e; 
with c,. u(c,) is an element of the kernel of B. Using the subgraph G' it is easily seen 
that there are I E I - I VI linear independent vectors of this kind each of them correspond- 
ing to an edge of G not contained in G'. These vectors span the kernel of B. U 

Let us now assume that G contains at least one even or two odd cycles, as a 
consequence m(-?) > 0. In general the multiplicity of -2 may be very large and this 
fact has a simple consequence for the eigeristates of the Hubbard Hamiltonian on a 
line graph. This may be seen after a particle hole transformation 

(7) 

! x ( 1  5'1 - !) Ela!rix TWkh en::ies 0 0: !. FroEl !his st:"c!":e axd the fac! !ha: ! is odd i! 

the Clrielltrd incidence matrix for this orien!ation. n i s  matrix has rank I VI - 1 and its 

+ + b,, = e,, b,, = c,, . 
Such a transformation replaces n,, by ( I  - nx,,). The transformed particle numbers are 
N' = 21 VI - N, N :  = I VI - N + ,  NL = I VI - N- and the transformed Hamiltonian, after 
a shift of the energy scale by - U(l VI - N ' ) ,  becomes 

H'= 1 P,.t:cb*"+ L'X ?ix+?i-. (8; 
"..I." 

In comparison with (1) the sign of the kinetic energy has changed. In the same way 
the sign of the spin operators (2) is changed by this transformation whereas the total 
spin ( 3 )  is left invariant. Since the expectation value of the kinetic energy of a single 
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particle is not less than -2 and the expectation value of the interaction is not less than 
0, an eigenvalue of H' is not less than -2". I f  now N ' S m ( - 2 ) ,  it is possible to 
construct eigenstates with S =  N'/2 .  To do this, we choose an orthonormal basis in 
the eigenspace of the eigenvalue -2 of A,. We let NL = O  and build a multiparticle 
state that is a Slater determinant of N' basis states. Such a state is clearly an eigenstate 
of H'  with the eigenvalue -2". Since the spin is not changed by the particle hole 
transformation (7) and the trace of the adjacency matrix is equal to zero, we arrive at 
the following theorem. 

Theorem. Let L ( G )  = ( V,, E,) be a line graph of a finite connected graph G = ( V, E) 
and let M = I VI + IEl - 1 if G is bipartite and M = I VI + IEl otherwise. The Hamiltonian 
(1) on the line graph L ( G )  in a system with N >  M electrons has ferromagnetic ground 
states with the saturated value S = f(21 V,/ - N )  forthe spin and an energy U(l V,l - N )  - 
2(21 v~l - N ) .  

This theorem may be illustrated by some interesting examples. For instance one may 
take the hexagonal lattice with periodic boundary conditions (or a finite part of it). 
The line graph of it is the Kagomi lattice and m( -2) = I V&3 + 1.  The Hubbard model 
on the Kagom6 lattice has ferromagnetic ground states if N 3 (5/3)1 V,l - 1. Another 
example is the line graph of the square lattice with periodic boundary conditions (or 
a finite part of it), which is a square lattice with cross hoppings on half of the squares. 
This graph may be represented by a regular lattice of cornersharing tetrahedra. One 
has m ( - 2 )  = I  V&2+ 1 and therefore the Hubbard model on this graph has ferromag- 
netic ground states if N > (3/2)1 V,l- 1. A similar line graph in three dimensions is the 
lattice of the octahedral sites of a spinel [ I l l .  It is in Fact the line graph of the diamond 
lattice. As above the multiplicity of -2 is m(-2) = I V&2+ 1 and therefore one again 
iinds ierromagnetic ground states ior the Hubbard modei on this graph i i  N >  
(3/2)1 V,l- 1.  It should be mentioned that a general line graph is a graph that consists 
of complete graphs K ,  connected at the vertices such that two complete graphs have 
one vertex in common. 

The theorem mentioned above is easily generalized to a larger class of graphs. In 
fact, it is true whenever the adjacency matrix satisfies (4) for some matrix E,  and M 
is determined by the dimension of the kernei of B. T i e  adjacency matrices of the 
hyperoctahedral graphs (sometimes called cocktail party graphs) Hh (see [lo]) and of 
the generalized line graphs L(G; b, , . . . , blul) introduced by Hoffmann [12] satisfy 
(4) as well. One has m(-2)= b - l  in the case of the hyperoctahedral graph Hh, 
m(-2) = 1El-I VI + X b, + 1 for the generalized line graphs of a bipartite graph G = 
(V,  E)  and m ( - 2 )  = [El  - 1  VI +): b, for the generalized line graphs of a non-bipartite 
graph. 

I wish to thank A Siito and H Kunz for many useful discussions. 
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